Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688280

RESUMEN

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.

2.
Nucleic Acids Res ; 52(6): e34, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38375914

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a network of pathways that degrades transcripts that undergo premature translation termination. In mammals, NMD can be divided into the exon junction complex (EJC)-enhanced and EJC-independent branches. Fluorescence- and luminescence-based reporters have long been effective tools to investigate NMD, yet existing reporters largely focus on the EJC-enhanced pathway. Here, we present a system of reporters for comparative studies of EJC-independent and EJC-enhanced NMD. This system also enables the study of NMD-associated outcomes such as premature termination codon (PTC) readthrough and truncated protein degradation. These reporters are compatible with fluorescence or luminescence-based readouts via transient transfection or stable integration. Using this reporter system, we show that EJC-enhanced NMD RNA levels are reduced by 2- or 9-fold and protein levels are reduced by 7- or 12-fold compared to EJC-independent NMD, depending on the reporter gene used. Additionally, the extent of readthrough induced by G418 and an NMD inhibitor (SMG1i), alone and in combination, varies across NMD substrates. When combined, G418 and SMG1i increase readthrough product levels in an additive manner for EJC-independent reporters, while EJC-enhanced reporters show a synergistic effect. We present these reporters as a valuable toolkit to deepen our understanding of NMD and its associated mechanisms.


Asunto(s)
Exones , Genes Reporteros , Técnicas Genéticas , Degradación de ARNm Mediada por Codón sin Sentido , Exones/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Células HEK293 , Genes Reporteros/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...